
  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 1 of 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DBMS & PL/SQL  

For Diploma in Computer Applications  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 2 of 42 

INDEX:  

Sl 

No 
Name of the Experiment Page No 

1.  

Implementation of DDL commands of SQL with suitable examples  

• Create table  

• Alter table   

• Drop Table  

  

2.  

Implementation of DML commands of SQL with suitable examples  

• Insert  

• Update  

• Delete  

  

3.  

Implementation of different types of function with suitable examples  

• Number function   

• Aggregate Function  

• Character Function  

  

4.  

Implementation of different types of operators in SQL  

• Arithmetic Operators  

• Logical Operators  

• Comparison Operator  

• Special Operator  

• Set Operation  

  

5.  

Implementation of different types of Joins  

• Inner Join  

• Outer Join  

• Natural Join etc..  

  

6.  

 Study and Implementation of   

• Group By & having clause  

• Order by clause  

• Indexing  

  

7.  

Study & Implementation of   

• Sub queries   

• Views  

  

8  Study & Implementation of different types of constraints.    



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 3 of 42 

9  STUDENT TABLE   

10  BOOK TABLE   

11  EMPLOYEE TABLE   

12 BANK TABLE  

13 STOCK TABLE  

14 
Implementation of PL/SQL commands  

Write a PL/SQL program to add two numbers? 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 4 of 42 

 

Experiment No: 1  

  

Title: Implementation of DDL commands of SQL with suitable examples  

• Create table  

• Alter table  

• Drop Table  

  

Objective:   

 To understand the different issues involved in the design and implementation of a 

database system  

 To understand and use data definition language to write query for a database  

Theory:  

 

SQL (Structured Query Language):   

Structured Query Language is a database computer language designed for managing data 

in relational database management systems (RDBMS), and originally based upon Relational 

Algebra. Its scope includes data query and update, schema creation and modification, and 

data access control.   

 

 DATA TYPES:  

1. CHAR (Size): This data type is used to store character strings values of fixed length. 

The size in brackets determines the number of characters the cell can hold. The 

maximum number of character is 255 characters.  

  

2. VARCHAR (Size) / VARCHAR2 (Size): This data type is used to store variable length 

alphanumeric data. The maximum character can hold is 2000 character.  

  

3. NUMBER (P, S): The NUMBER data type is used to store number (fixed or floating 

point).  

4. DATE:  This data type is used to represent date and time.  

5. LONG: This data type is used to store variable length character strings containing up to 

2GB. Long data can be used to store arrays of binary data in ASCII format. LONG 

http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Relational_Algebra
http://en.wikipedia.org/wiki/Relational_Algebra
http://en.wikipedia.org/wiki/Database_schema


  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 5 of 42 

values cannot be indexed, and the normal character functions such as SUBSTR cannot 

be applied.  

  

6. RAW: The RAW data type is used to store binary data, such as digitized picture or 

image.  

 

There are five types of SQL statements. They are:  

1. DATA DEFINITION LANGUAGE (DDL)  

2. DATA MANIPULATION LANGUAGE (DML)  

3. DATA RETRIEVAL LANGUAGE (DRL)  

4. TRANSATIONAL CONTROL LANGUAGE (TCL)  

5. DATA CONTROL LANGUAGE (DCL)   

1. DATA DEFINITION LANGUAGE (DDL): The Data Definition Language (DDL) is 

used to create and destroy databases and database objects. These commands will primarily be 

used by database administrators during the setup and removal phases of a database project.  

Four basic DDL commands are:  

 1. CREATE    2.  ALTER    3. DROP    4. RENAME  

  

1. CREATE:  

(a) CREATE TABLE: This is used to create a new relation (table)  

Syntax:  CREATE TABLE <relation_name/table_name >  

(field_1 data_type(size),field_2 data_type(size), .. . );  

Example:   

  SQL> CREATE TABLE Student (sno NUMBER (3), sname CHAR (10), class CHAR (5));  

  

2. ALTER:  

a) ALTER TABLE ...ADD...: This is used to add some extra fields into existing  

relation.  

Syntax: ALTER TABLE relation_name ADD (new field_1 data_type(size), new field_2  

data_type(size),..);  

Example:  SQL>ALTER TABLE std ADD (Address CHAR(10));   



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 6 of 42 

  

b) ALTER TABLE...MODIFY...: This is used to change the width as well as data type 

of fields of existing relations.  

  

Syntax: ALTER TABLE relation_name MODIFY (field_1 newdata_type(Size), field_2  

newdata_type(Size),....field_newdata_type(Size));  

  

Example:SQL>ALTER  TABLE  student  MODIFY(sname  VARCHAR(10),class  

VARCHAR(5));  

  

c) ALTER TABLE..DROP...: This is used to remove any field of existing relations.  

  

Syntax: ALTER TABLE relation_name DROP COLUMN (field_name);  

  

Example:SQL>ALTER TABLE student DROP column (sname);  

  

d) ALTER TABLE..RENAME...: This is used to change the name of  fields in existing 

relations.  

  

Syntax: ALTER TABLE relation_name RENAME COLUMN (OLD field_name) to  

            (NEW field_name);  

Example: SQL>ALTER TABLE student RENAME COLUMN sname to stu_name;  

  

3. DROP TABLE: This is used to delete the structure of a relation. It permanently deletes 

the records in the table.  

Syntax: DROP TABLE relation_name;  

Example: SQL>DROP TABLE std;  

  

4. RENAME: It is used to modify the name of the existing database object.  

Syntax:  RENAME TABLE old_relation_name TO new_relation_name;  

Example: SQL>RENAME TABLE std TO std1;  

*** 

  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 7 of 42 

Experiment No:2 

  

Title : Implementation of DML commands of SQL with suitable examples  

• Insert table  

• Update table  

• Delete Table  

  

Objective :   

 To understand the different issues involved in the design and implementation of a 

database system  

 To understand and use data manipulation language to query, update, and manage a 

database  

Theory :  

  

 DATA MANIPULATION LANGUAGE (DML): The Data Manipulation Language 

(DML) is used to retrieve, insert and modify database information. These commands will be 

used by all database users during the routine operation of the database. Let's take a brief look 

at the basic DML commands:  

 1. INSERT    2. UPDATE   3. DELETE  

 

1. INSERT INTO:  This is used to add records into a relation. These are three type of 

INSERT INTO queries which are as  

a) Inserting a single record  

Syntax:  INSERT INTO < relation/table name> (field_1,field_2……field_n)VALUES      

   (data_1,data_2,........data_n);  

Example:  SQL>INSERT INTO student(sno,sname,class,address)VALUES     

       (1,‟Ravi‟,‟M.Tech‟,‟Palakol‟);  

b) Inserting a single record  

Syntax:  INSERT INTO < relation/table name>VALUES (data_1,data_2,........data_n);  

Example:  SQL>INSERT INTO student VALUES (1,‟Ravi‟,‟M.Tech‟,‟Palakol‟);  

 

c) Inserting all records from another relation  

Syntax: INSERT INTO relation_name_1 SELECT Field_1,field_2,field_n     

      FROM relation_name_2 WHERE field_x=data;  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 8 of 42 

Example: SQL>INSERT INTO std SELECT sno,sname FROM student WHERE name = 

„Ramu„;  

  

d) Inserting multiple records  

Syntax:  INSERT INTO relation_name field_1,field_2,.....field_n) VALUES      

               (&data_1,&data_2,........&data_n);  

Example:  SQL>INSERT INTO student (sno, sname, class,address) VALUES 

(&sno,‟&sname‟,‟&class‟,‟&address‟);  

Enter value for sno: 101  

Enter value for name: Ravi  

Enter value for class: M.Tech  

Enter value for name: Palakol  

2. UPDATE-SET-WHERE: This is used to update the content of a record in a relation.  

Syntax:  SQL>UPDATE relation name SET Field_name1=data,field_name2=data,  

          WHERE field_name=data;   

Example:  SQL>UPDATE student SET sname = „kumar‟ WHERE sno=1;  

3. DELETE-FROM: This is used to delete all the records of a relation but it will retain the 

structure of that relation.  

  

a) DELETE-FROM: This is used to delete all the records of relation.  

    Syntax:  SQL>DELETE FROM relation_name;  

   Example:  SQL>DELETE FROM std;  

  

b) DELETE -FROM-WHERE: This is used to delete a selected record from a relation.  

    Syntax:  SQL>DELETE FROM relation_name WHERE condition;  

   Example:  SQL>DELETE FROM student WHERE sno = 2;  

  

5. TRUNCATE: This command will remove the data permanently. But structure will not be 

removed.  

 

 

 

Difference between Truncate & Delete:-  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 9 of 42 

 By using truncate command data will be removed permanently & will not get back 

where as by using delete command data will be removed temporally & get back by 

using roll back command.  

 By using delete command data will be removed based on the condition where as by 

using truncate command there is no condition.  

 Truncate is a DDL command & delete is a DML command.  

Syntax:  TRUNCATE  TABLE <Table name>  

Example   TRUNCATE  TABLE student;  

 To Retrieve data from one or more tables.   

1. SELECT FROM: To display all fields for all records.  

Syntax :  SELECT * FROM relation_name;  

Example :  SQL> select * from dept;  

DEPTNO  DNAME           LOC  

 --------   -----------     ----------  

10     ACCOUNTING      NEW YORK  

20     RESEARCH        DALLAS  

30     SALES            CHICAGO  

40     OPERATIONS  BOSTON  

2. SELECT FROM:  To display a set of fields for all records of relation.  

Syntax:    SELECT a set of fields FROM relation_name;  

Example:  SQL> select deptno, dname from dept;  

      DEPTNO   DNAME  

  -------    ----------  

        10     ACCOUNTING  

        20     RESEARCH  

        30     SALES  

3. SELECT - FROM -WHERE: This query is used to display a selected set of fields for a 

selected set of records of a relation.  

Syntax:  SELECT a set of fields FROM relation_name WHERE  condition;  

Example: SQL> select * FROM dept WHERE deptno<=20;  

      DEPTNO  DNAME          LOC  

  ------    -----------     ------------  

       10     ACCOUNTING    NEW YORK  

             20                     RESEARCH          DALLAS  

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 10 of 42 

Experiment No: 3  

  

Title: Implementation of different types of functions with suitable examples.  

 Number Function   

 Aggregate Function  

 Character Function  

 Conversion Function  

 Date Function  

Objective:   

 To understand and implement various types of function in SQL.  

NUMBER FUNCTION:  

  

Abs(n) :Select abs(-15) from dual;  

Exp(n): Select exp(4) from dual;  

Power(m,n): Select power(4,2) from dual;  

Mod(m,n): Select mod(10,3) from dual;  

Round(m,n): Select round(100.256,2) from dual;  

Trunc(m,n): ;Select trunc(100.256,2) from dual;  

Sqrt(m,n);Select sqrt(16) from dual;  

  

Develop aggregate plan strategies to assist with summarization of several data entries.  

  

Aggregative operators: In addition to simply retrieving data, we often want to perform some 

computation or summarization. SQL allows the use of arithmetic expressions.  

  

1. Count: COUNT following by a column name returns the count of tuple in that column. If 

DISTINCT keyword is used then it will return only the count of unique tuple in the 

column. Otherwise, it will return count of all the tuples (including duplicates) count (*) 

indicates all the tuples of the column.  

Syntax: COUNT (Column name)  

Example: SELECT COUNT (Sal) FROM emp;  

  

2. SUM: SUM followed by a column name returns the sum of all the values in that column.   

 Syntax: SUM (Column name)     



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 11 of 42 

Example: SELECT SUM (Sal) From emp;  

  

3. AVG: AVG followed by a column name returns the average value of that column values.   

 Syntax: AVG (n1, n2...)       

Example: Select AVG (10, 15, 30) FROM DUAL;  

  

4. MAX: MAX followed by a column name returns the maximum value of that column.  

 Syntax: MAX (Column name)     

Example: SELECT MAX (Sal) FROM emp;  

SQL> select deptno, max(sal) from emp group by deptno;  

  

 DEPTNO  MAX (SAL)  

------   --------  

10        5000  

20        3000   

30        2850  

  

SQL> select deptno, max (sal) from emp group by deptno having max(sal)<3000;  

  

     DEPTNO     MAX(SAL)  

     -----              --------               

       30              2850  

  

5. MIN: MIN followed by column name returns the minimum value of that column.  

 Syntax: MIN (Column name)     

Example: SELECT MIN (Sal) FROM emp;  

  

SQL>select deptno,min(sal) from emp group by deptno having min(sal)>1000;  

  

    DEPTNO   MIN (SAL)  

    -----    --------  

      10     1300  

 

  

CHARACTER FUNCTION:  

  

Initcap(char) : select initcap(“hello”) from dual;  

  

Lower (char):  select lower („hello‟) from dual;  

  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 12 of 42 

Upper (char) :select upper („hello‟) from dual;  

  

Ltrim (char,[set]): select ltrim („cseit‟, „cse‟) from dual;   

  

Rtrim (char,[set]): select rtrim („cseit‟, „it‟) from dual;  

  

Replace (char,search ): select replace(„jack and jue‟,„j‟,„bl‟) from dual;  

  

 

STRING FUNCTIONS:  

Concat: CONCAT returns char1 concatenated with char2. Both char1 and char2 can be any  

of the datatypes   

SQL>SELECT CONCAT(„ORACLE‟,‟CORPORATION‟)FROM DUAL;  

ORACLECORPORATION  

  

Lpad: LPAD returns expr1, left-padded to length n characters with the sequence of  

characters in expr2.  

SQL>SELECT LPAD(„ORACLE‟,15,‟*‟)FROM DUAL;  

*********ORACLE  

Rpad: RPAD returns expr1, right-padded to length n characters with expr2, replicated as 

many times as necessary.    

SQL>SELECT RPAD („ORACLE‟,15,‟*‟)FROM DUAL;  

ORACLE*********  

  

Ltrim: Returns a character expression after removing leading blanks.   

SQL>SELECT LTRIM(„SSMITHSS‟,‟S‟)FROM DUAL;  

MITHSS  

  

Rtrim: Returns a character string after truncating all trailing blanks   

SQL>SELECT RTRIM(„SSMITHSS‟,‟S‟)FROM DUAL;  

SSMITH  

  

Lower: Returns a character expression after converting uppercase character data to  

lowercase.   

SQL>SELECT LOWER(„DBMS‟)FROM DUAL;  

dbms  

  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 13 of 42 

Upper: Returns a character expression with lowercase character data converted to uppercase  

SQL>SELECT UPPER(„dbms‟)FROM DUAL;  

DBMS  

Length: Returns the number of characters, rather than the number of bytes, of the given 

string expression, excluding trailing blanks.  

SQL>SELECT LENGTH(„DATABASE‟)FROM DUAL;  

8  

Substr: Returns part of a character, binary, text, or image expression.   

SQL>SELECT SUBSTR(„ABCDEFGHIJ‟3,4)FROM DUAL;  

CDEF  

  

Instr: The INSTR functions search string for substring. The function returns an integer  

indicating the position of the character in string that is the first character of this occurrence.  

SQL>SELECT INSTR('CORPORATE FLOOR','OR',3,2)FROM DUAL;  

14  

 

 

  

***** 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 14 of 42 

Experiment No: 4  

Title : Implementation of different types of operators in SQL.  

• Arithmetic Operator  

• Logical Operator  

• Comparision Operator  

• Special Operator  

• Set Operator   

Objective:  

 To learn different types of operator.  

Theory:  

  

 

ARIHMETIC OPERATORS:  

  

(+) : Addition - Adds values on either side of the operator .  

(-):   Subtraction - Subtracts right hand operand from left hand operand .  

(*):  Multiplication - Multiplies values on either side of the operator .  

(/):   Division - Divides left hand operand by right hand operand .  

 (^):  Power- raise to power of .  

 (%):Modulus - Divides left hand operand by right hand operand and returns remainder.  

 

LOGICAL OPERATORS:  

  

AND : The AND operator allows the existence of multiple conditions in an SQL statement's  

WHERE clause.   

 

OR: The OR operator is used to combine multiple conditions in an SQL statement's WHERE   

          clause.   

 

NOT: The NOT operator reverses the meaning of the logical operator with which it is used.  

        Eg: NOT EXISTS, NOT BETWEEN, NOT IN, etc. This is a negate operator.   

  

 

COMPARISION OPERATORS:  

  

(=):Checks if the values of two operands are equal or not, if yes then condition becomes true.   

  

 (!=):Checks if the values of two operands are equal or not, if values are not equal then 

condition becomes true.   



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 15 of 42 

  

  

(< >):Checks if the values of two operands are equal or not, if values are not equal then 

condition becomes true.   

 

(>):Checks if the value of left operand is greater than the value of right operand, if yes then 

condition becomes true   

 

 (<):Checks if the value of left operand is less than the value of right operand, if yes then 

condition becomes true.   

  

 (>=):Checks if the value of left operand is greater than or equal to the value of right operand, 

if yes then condition becomes true.  

  

(<=):Checks if the value of left operand is less than or equal to the value of right operand, if 

yes then condition becomes true.   

   

 

SPECIAL OPERATOR:  

  

BETWEEN: The BETWEEN operator is used to search for values that are within a set of 

values, given the minimum value and the maximum value.   

  

IS NULL: The NULL operator is used to compare a value with a NULL attribute value.   

  

ALL: The ALL operator is used to compare a value to all values in another value set   

  

ANY: The ANY operator is used to compare a value to any applicable value in the list 

according to the condition.   

  

LIKE: The LIKE operator is used to compare a value to similar values using wildcard 

operators.It allows to use percent sign(%) and underscore ( _ ) to match a given string 

pattern.  

  

IN: The IN operator is used to compare a value to a list of literal values that have been 

specified.   

 

SET OPERATORS:  

  

The Set operator combines the result of 2 queries into a single result. The 

following are the operators:  Union   

• Union all  

• Intersect   

• Minus  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 16 of 42 

Union: Returns all distinct rows selected by both the queries  

Union all: Returns all rows selected by either query including the duplicates.  

 Intersect: Returns rows selected that are common to both queries.  

 Minus: Returns all distinct rows selected by the first query and are not by the second  

   

*****  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 17 of 42 

Experiment No: 5 
  

Title :  Implementation of different types of Joins  

• Inner Join  

• Outer Join  

• Natural Join..etc  

Objective :   

 To implement different types of joins  

Theory :  

    The SQL Joins clause is used to combine records from two or more tables in a 

database. A JOIN is a means for combining fields from two tables by using values common 

to each. The join is actually performed by the „where‟ clause which combines specified rows 

of tables.  

Syntax:   

SELECT column 1, column 2, column 3...  

FROM  table_name1, table_name2   

WHERE  table_name1.column name  =  table_name2.columnname;    

Types of Joins :  

1. Simple Join  

2. Self Join  

3. Outer Join  

  

Simple Join:  

It is the most common type of join. It retrieves the rows from 2 tables having a 

common column and is further classified into   

  

Equi-join :  

A join, which is based on equalities, is called equi-join.  

Example:  

Select * from item, cust where item.id=cust.id;  

  

In the above statement, item-id = cust-id performs the join statement. It retrieves rows from 

both the tables provided they both have the same id as specified by the where clause. Since 

the where clause uses the comparison operator (=) to perform a join, it is said to be 

equijoin. It combines the matched rows of tables. It can be used as follows:  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 18 of 42 

  

 To insert records in the target table.  

 To create tables and insert records in this table.  

 To update records in the target table.  

 To create views.  

 Non Equi-join:  

It specifies the relationship between columns belonging to different tables by 

making use of relational operators other than‟=‟.  

  

Example:  

  

Select * from item, cust where item.id<cust.id;  

  

Table Aliases  

Table aliases are used to make multiple table queries shorted and more readable. We give 

an alias name to the table in the „from‟ clause and use it instead of the name throughout the 

query.  

  

Self join:  

  

Joining of a table to itself is known as self-join. It joins one row in a table to another. 

It can compare each row of the table to itself and also with other rows of the same table.  

  

Example:  

  

select * from emp x ,emp y where x.salary >= (select avg(salary) from x.emp 

where x. deptno =y.deptno);  

  

Outer Join:  

  

It extends the result of a simple join. An outer join returns all the rows returned by simple 

join as well as those rows from one table that do not match any row from the table. The 

symbol(+) represents outer join.  

 

***** 

   



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 19 of 42 

Experiment No: 6  

  

Title :  Study & Implementation of  

• Group by & Having Clause  

• Order by Clause  

• Indexing  

 Objective:  

  To learn the concept of group functions  

  

Theory:  

  

GROUP BY: This query is used to group to all the records in a relation together for each and 

every value of a specific key(s) and then display them for a selected set of fields the relation.  

 Syntax:    SELECT <set of fields> FROM <relation_name>   

      GROUP BY <field_name>;  

 Example:   SQL> SELECT EMPNO, SUM (SALARY) FROM EMP GROUP BY   

                               EMPNO;     

GROUP BY-HAVING : The HAVING clause was added to SQL because the WHERE  

keyword could not be used with aggregate functions. The HAVING clause must follow the  

GROUP BY clause in a query and must also precede the ORDER BY clause if used.  

Syntax:     SELECT column_name, aggregate_function(column_name)  FROM table_name   

      WHERE column_name operator value   

      GROUP BY column_name  

      HAVING aggregate_function(column_name) operator value;  

   

Example : SELECT Employees.LastName, COUNT(Orders.OrderID) AS NumberOfOrders     

                  FROM (Orders  

                  INNER JOIN Employees  

                  ON Orders.EmployeeID=Employees.EmployeeID) GROUP BY LastName                   

HAVING COUNT (Orders.OrderID) > 10;  

  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 20 of 42 

JOIN using GROUP BY: This query is used to display a set of fields from two relations by 

matching a common field in them and also group the corresponding records for each and 

every value of a specified key(s) while displaying.  

  

Syntax:  SELECT <set of fields (from both relations)> FROM relation_1,relation_2                    

WHERE relation_1.field_x=relation_2.field_y GROUP BY field_z;  

Example:  

SQL> SELECT empno,SUM(SALARY) FROM emp,dept   

           WHERE emp.deptno =20 GROUP BY empno;   

         

ORDER BY: This query is used to display a selected set of fields from a relation in an 

ordered manner base on some field.  

Syntax:  SELECT <set of fields> FROM <relation_name>   

ORDER BY <field_name>;  

 Example: SQL> SELECT empno, ename, job FROM emp ORDER BY job;  

  

JOIN using ORDER BY: This query is used to display a set of fields from two relations by 

matching a common field in them in an ordered manner based on some fields.  

Syntax: SELECT <set of fields (from both relations)> FROM relation_1, relation_2      

              WHERE relation_1.field_x = relation_2.field_y ORDER BY field_z;  

Example: SQL> SELECT empno,ename,job,dname FROM emp,dept   

                            WHERE emp.deptno = 20 ORDER BY job;  

INDEXING: An index is an ordered set of pointers to the data in a table. It is based on the 

data values in one or more columns of the table. SQL Base stores indexes separately from 

tables.  

An index provides two benefits:  

• It improves performance because it makes data access faster.  

• It ensures uniqueness. A table with a unique index cannot have two rows with the 

same values in the column or columns that form the index key.  

Syntax:  CREATE INDEX <index_name> on <table_name> (attrib1,attrib 2….attrib n);  

 Example: 

CREATE INDEX id1 on emp(empno,dept_no);      

  

 *****  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 21 of 42 

Experiment No: 7  

  

Title : Study & Implementation of  

• Sub queries  

• Views  

Objective:  

 To perform nested Queries and joining Queries using DML command 

 To understand the implementation of views.  

Theory:  

SUBQUERIES: The query within another is known as a sub query. A statement 

containing sub query is called parent statement. The rows returned by sub query are used by 

the parent statement or in other words A subquery is a SELECT statement that is embedded 

in a clause of another SELECT statement  

You can place the subquery in a number of SQL clauses:  

• WHERE clause  

• HAVING clause  

• FROM clause  

• OPERATORS( IN.ANY,ALL,<,>,>=,<= etc..)  

Types  

1. Sub queries that return several values  

Sub queries can also return more than one value. Such results should be made use 

along with the operators in and any.  

2. Multiple queries  

Here more than one sub query is used. These multiple sub queries are combined by 

means of „and‟ & „or‟ keywords.  

3. Correlated sub query  

A sub query is evaluated once for the entire parent statement whereas a correlated  

Sub query is evaluated once per row processed by the parent statement.  

  

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 22 of 42 

VIEW: In SQL, a view is a virtual table based on the result-set of an SQL statement.  

            A view contains rows and columns, just like a real table. The fields in a view are 

fields from one or more real tables in the database.  

You can add SQL functions, WHERE, and JOIN statements to a view and present the data as 

if the data were coming from one single table.  

 A view is a virtual table, which consists of a set of columns from one or more tables. It is 

similar to a table but it does not store in the database. View is a query stored as an object.  

  

Syntax:    CREATE VIEW <view_name> AS SELECT <set of fields>  

                 FROM relation_name WHERE (Condition)  

Example:    

 SQL>   CREATE VIEW employee AS SELECT empno,ename,job FROM EMP    

WHERE job = „clerk‟;  

SQL>    View created.  

  

Example:  

CREATE VIEW [Current Product List] AS  

SELECT ProductID, ProductName  

FROM Products  

WHERE Discontinued=No;  

  

UPDATING A VIEW : A view can updated by using the following syntax :  

Syntax :  CREATE OR REPLACE VIEW view_name AS  

                SELECT column_name(s)  

                FROM table_name  

                WHERE condition  

DROPPING A VIEW: A view can deleted  with the DROP VIEW command.  

Syntax:  DROP VIEW <view_name> ;  

  

****** 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 23 of 42 

Experiment No: 8  

  

Title : • Study & Implementation of different types of constraints  

 Objective:  

 To practice and implement constraints  

 Theory:  

CONSTRAINTS: Constraints are used to specify rules for the data in a table. If there 

is any violation between the constraint and the data action, the action is aborted by the 

constraint. It can be specified when the table is created (using CREATE TABLE statement) 

or after the table is created (using ALTER TABLE statement).  

  

1. NOT NULL: When a column is defined as NOTNULL, then that column becomes a 

mandatory column. It implies that a value must be entered into the column if the record is to 

be accepted for storage in the table.  

  

Syntax:  

CREATE TABLE Table_Name (column_name data_type (size) NOT NULL, ); 

Example:  

CREATE TABLE  student (sno NUMBER(3)NOT NULL, name CHAR(10));  

 

2. UNIQUE: The purpose of a unique key is to ensure that information in the column(s) 

is unique i.e. a value entered in column(s) defined in the unique constraint must not be 

repeated across the column(s). A table may have many unique keys.  

Syntax:  

CREATE TABLE Table_Name(column_name data_type(size) UNIQUE, ….);  

Example:  

CREATE TABLE student (sno NUMBER(3) UNIQUE, name CHAR(10));  

  

3. CHECK: Specifies a condition that each row in the table must satisfy. To satisfy the 

constraint, each row in the table must make the condition either TRUE or unknown (due to a 

null).  

Syntax:  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 24 of 42 

CREATE TABLE Table_Name(column_name data_type(size) CHECK(logical  

expression), ….);  

Example:  

  CREATE  TABLE  student  (sno  NUMBER  (3),  name  CHAR(10),class  

CHAR(5),CHECK(class IN(„CSE‟,‟CAD‟,‟VLSI‟));  

  

4. PRIMARY KEY: A field which is used to identify a record uniquely. A column or 

combination of columns can be created as primary key, which can be used as a reference 

from other tables. A table contains primary key is known as Master Table.  

 It must uniquely identify each record in a table.  

 It must contain unique values.  

 It cannot be a null field.  

 It cannot be multi port field.  

 It should contain a minimum no. of fields necessary to be called unique.  

Syntax:  

CREATE TABLE Table_Name(column_name data_type(size) PRIMARY KEY,  

….);  

Example:  

CREATE TABLE faculty (fcode NUMBER(3) PRIMARY KEY, fname 

CHAR(10));  

  

5. FOREIGN KEY: It is a table level constraint. We cannot add this at column level. To 

reference any primary key column from other table this constraint can be used. The table in 

which the foreign key is defined is called a detail table. The table that defines the primary 

key and is referenced by the foreign key is called the master table.  

Syntax:    CREATE TABLE Table_Name(column_name data_type(size)   

      FOREIGN KEY(column_name) REFERENCES table_name); Example:  

CREATE TABLE subject (scode NUMBER (3) PRIMARY KEY, subname  

CHAR(10),fcode NUMBER(3), FOREIGN KEY(fcode) REFERENCE faculty );  

  

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 25 of 42 

Defining integrity constraints in the alter table command:  

  

Syntax:   ALTER TABLE Table_Name ADD PRIMARY KEY (column_name);  

Example:  

(Or)  

ALTER TABLE student ADD PRIMARY KEY (sno);  

Syntax:   ALTER TABLE table_name ADD CONSTRAINT constraint_name   

PRIMARY KEY(colname)  

Example:   ALTER TABLE student ADD CONSTRAINT SN PRIMARY KEY(SNO)  

  

Dropping integrity constraints in the alter table command:  

Syntax:   ALTER TABLE Table_Name DROP constraint_name;  

Example:   ALTER TABLE student DROP PRIMARY KEY;  

  

(or)  

  

Syntax:  ALTER TABLE student DROP CONSTRAINT constraint_name;  

Example:  ALTER TABLE student DROP CONSTRAINT SN;  

  

6. DEFAULT : The DEFAULT constraint is used to insert a default value into a column. The 

default value will be added to all new records, if no other value is specified.  Syntax:   

 CREATE TABLE Table_Name(col_name1,col_name2,col_name3  

            DEFAULT „<value>‟);  

Example:  

CREATE TABLE student (sno NUMBER(3) UNIQUE, name CHAR(10),address  

VARCHAR(20) DEFAULT „Aurangabad‟);  

***** 

 

 

 

 

 

 

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 26 of 42 

Experiment No: 9 

  

Title:  Create a table Student with the following fields and insert at least 5 records into 

the table except for the column Total.  

 

 

1. Create a table Student with the following fields and insert at least 5 records into 

the table except for the column Total.  

ROLL_NUMBER   INTEGER   PRIMARY KEY 

 NAME    VARCHAR (25) 

 BATCH    VARCHAR (15)  

MARK1    INTEGER  

MARK2    INTEGER  

MARK3    INTEGER 

 TOTAL    INTEGER 

 

(1) Update the column Total with the sum of Mark1, Mark2 and Mark3.  

(2)  List the details of students in DCA batch.  

(3) Display the name and total marks of students who are failed (Total < 90).  

(4)  Display the name and batch of those students who scored 90 or more in Mark1 

and Mark2. 

(5) Delete the student who scored below 30 in Mark3. 

 

SQL statements : 

 

1. SQL Query to create the  table .  

CREATE TABLE student   

(  

Roll_Number INT PRIMARY KEY,  

Name VARCHAR (25),  

Batch VARCHAR(15),  

Mark1 INT,  

Mark2 INT,  

Mark3 INT,  

Total INT  

);  

 

2. SQL Query to insert 5 records into the table  

I. INSERT INTO student (Roll_Number, Name, Batch, Mark1, 

Mark2, Mark3) VALUES (1, ‟Akhil‟, ‟science‟,  20, 30, 25);  

II. INSERT INTO student (Roll_Number, Name, Batch, Mark1, 

Mark2, Mark3) VALUES (2, ‟Sreejith‟, ‟humanities‟,  140, 110, 

20);  

III. INSERT INTO student (Roll_Number, Name, Batch, Mark1, 

Mark2, Mark3) VALUES (3, ‟Chithra‟,  ‟commerce‟,  45, 35, 

28);  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 27 of 42 

IV. INSERT INTO student (Roll_Number, Name, Batch, Mark1, 

Mark2, Mark3) VALUES (4, ‟Arun‟, ‟science‟, 120, 150, 100);  

V. INSERT INTO student (Roll_Number, Name, Batch, Mark1, 

Mark2, Mark3) VALUES (5, ‟Vinitha‟, ‟commerce‟,  22, 25, 

35);  

 

3. SQL Query for each question  

 

a. UPDATE student   

SET Total=Mark1+Mark2+Mark3;  

b. SELECT *   

FROM student   

WHERE Batch=‟commerce‟;  

c. SELECT Name,Total   

FROM student   

WHERE Total<90;  

d. SELECT Name,Batch  

FROM student   

WHERE Mark1>90 AND Mark2>90;  

e. DELETE   

FROM STUDENT  

WHERE Mark3<30;  

 

Table with sample records 

 
Output of Queries 

a. Query OK, 5 rows affected.  

 
 

b. 2 rows in set.  

  
 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 28 of 42 

c.2 rows in set.  

 

d. 2 rows in set.  

 

e. Query OK, 3 rows affected.  

 
 

 

 

*****  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 29 of 42 

Experiment No: 10 

  

Title:  Create a table Book with the following fields and insert at least 5 records into the 

table. 

 

Book_ID Integer Primary key   

Book_Name Varchar (20)   

Author_Name Varchar (25)   

Pub_Name Varchar (25)   

Price Decimal (10,2)   

 

a. Create a view containing the details of books published by SCERT.   

b. Display the average price of books published by each publisher.   

c. Display the details of book with the highest price.   

d. Display the publisher and number of books of each publisher in the 

descending order of the count.   

e. Display the title, current price and the price after a discount of 10% in the 

alphabetical order of book title.   

 

SQL statements : 

 

1. SQL Query to create the  table .  

 

CREATE TABLE Book   

(  

Book_ID  INT PRIMARY KEY,  

Book_Name VARCHAR (20),  

Author_Name VARCHAR(25),  

Pub_Name VARCHAR(25),  

Price DEC(10,2)  

);  

2. SQL Query to insert 5 records into the table  

I. INSERT INTO Book  

VALUES (1, ‟Agnichirakukal‟, ‟A.P.J Abdul Kalam‟,  ‟DC 

Books‟,157);  

II. INSERT INTO Book  

VALUES (2, ‟Computer Science‟, ‟Team of Teachers‟, 

‟SCERT‟,100);  

III. INSERT INTO Book  

VALUES (3, ‟Aarachar‟, „Meera.K.R‟, ‟DC Books‟,370);  

IV. INSERT INTO Book  

VALUES (4, ‟Randamoozham‟, ‟M.T Vasudevan Nair‟,  

„Current Books‟,249);  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 30 of 42 

V. INSERT INTO Book  

VALUES (5, ‟Computer Application‟, ‟Team of Teachers‟,  

„SCERT‟,120);  

 

3. SQL Query for each question  

 

a. CREATE VIEW ScertView AS  

SELECT * FROM Book WHERE Pub_Name =‟SCERT‟;  

b. SELECT Pub_Name , AVG(Price)   

FROM Book  

GROUP BY Pub_Name;  

c. SELECT *  FROM Book  

 WHERE Price = (SELECT MAX(Price) FROM Book);   

d. SELECT Pub_Name , COUNT(*)   

FROM Book  

GROUP BY Pub_Name  

ORDER BY COUNT(*)  DESC;  

 

e. SELECT Book_Name, Price, Price-(Price*10/100)  

FROM Book  

ORDER BY Book_Name ASC;  

 

Table with sample records 

 
Output of Queries 

a. Query OK, 0 rows affected   

 
 

b. 3 rows in set.  

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 31 of 42 

c. 1 row in set.  

d.3 rows in set. 

 
e.5 rows in set.  

 
 

 

 

*****  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 32 of 42 

Experiment No: 11 

  

Title:  Create a table Employee with the following fields and insert at least 5 records into 

the table except the column Gross_pay and DA.   

 

Emp_code Integer Primary key   

Emp_name Varchar (20)   

Designation Varchar (25)   

Department Varchar (25)   

Basic Decimal (10,2)   

DA Decimal (10,2)   

Gross_pay Decimal (10,2)   

 

a) Update DA with 75% of Basic.   

b) Display the details of employees in Purchase, Sales and HR departments.   

c) Update the Gross_pay with the sum of Basic and DA.   

d) Display the details of employee with gross pay below 10000.   

e) Delete all the clerks from the table.   

 

SQL statements : 

1. SQL Query to create the  table .  

CREATE TABLE Employee   

(  

Emp_code  INT PRIMARY KEY,  

Emp_name VARCHAR (20),  

Designation VARCHAR(25),  

Department VARCHAR(25),  

Basic DEC(10,2),  

DA DEC(10,2),  

Gross_pay DEC(10,2)  

);  

2. SQL Query to insert 5 records into the table  

I. INSERT INTO Employee (Emp_code , Emp_name, 

Designation, Department, Basic) VALUES (1, ‟Rahul‟, ‟clerk‟, 

„sales‟, 5000);  

II. INSERT INTO Employee (Emp_code , Emp_name, 

Designation, Department, Basic) VALUES (2, ‟Abraham‟, 

‟supervisor‟, „purchase‟, 9000);  

III. INSERT INTO Employee (Emp_code , Emp_name, 

Designation, Department, Basic) VALUES (3, ‟Roshan‟,  

‟officer‟,  „HR‟ , 12000);  

IV. INSERT INTO Employee (Emp_code , Emp_name, 

Designation, Department, Basic) VALUES (4, ‟Soumya‟, 

‟supervisor‟, „stock‟, 4000);  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 33 of 42 

V. INSERT INTO Employee (Emp_code , Emp_name, 

Designation, Department, Basic) VALUES (5, ‟Anusree‟, 

‟clerk‟,  „purchase‟, 3000);  

 

3. SQL Query for each question  

 

a. UPDATE Employee   

SET  DA = Basic * 75 /100 ;  

b. SELECT * FROM Employee  

WHERE Department IN („sales‟, ‟purchase‟, ‟HR‟);  

c. UPDATE Employee   

SET   Gross_pay = Basic + DA;  

d. SELECT * FROM Employee  

WHERE Gross_pay < 10000;  

e. DELETE  

FROM Employee  

WHERE Designation = „clerk‟ ;  

 

Table with sample records 

 
 

Output of Queries 

a. Query OK, 5 rows affected.  

 
 

b. 4 rows in set.  

 
c. Query OK, 5 rows affected.  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 34 of 42 

 

d. 3 rows in set.  

 

e. Query OK, 2 rows affected.  

 

 

 

 

*****  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 35 of 42 

Experiment No: 12 

  

Title:  Create a table Bank with the following fields and insert at least 5 records into the 

table except the column Gross_pay and DA.   

 

Acc_No Integer Primary key   

Acc_Name Varchar (20)   

Branch_Name Varchar (25)   

Acc_ Type Varchar (10)   

Amount Decimal (10,2)   

 

a. Display the branch-wise details of account holders in the ascending order of 

the amount.   

b. Insert a new column named Minimum_Amount into the table with default 

value 1000.   

c. Update the Minimum_Amount column with the value 500 for the customers 

in branches other than Alappuzha and Malappuram.   

d. Find the number of customers who do not have the minimum amount 1000.   

e. Remove the details of SB accounts from Thiruvananthapuram branch who 

have zero (0) balance in their account.   

 

SQL statements : 

1. SQL Query to create the  table .  

 

CREATE TABLE Bank   

(  

Acc_No  INT PRIMARY KEY,  

Acc_Name VARCHAR (20),  

Branch_Name VARCHAR(25),  

Acc_Type VARCHAR(10),  

Amount DEC(10,2)  

);  

2. SQL Query to insert 5 records into the table  

I. INSERT INTO Bank  

VALUES (1, ‟Sreya‟, ‟Alappuzha‟,  ‟SB‟,7000);  

II. INSERT INTO Bank  

VALUES (2, ‟Akhil‟, ‟Thiruvananthapuram‟, ‟SB‟,0);  

III. INSERT INTO Bank  

VALUES (3, ‟Anuroop‟, „Malappuram‟, ‟FD‟,2000);  

IV. INSERT INTO Bank  

VALUES (4, ‟Rasheed‟, ‟Kozhikode‟, „SB‟,4000);  

V. INSERT INTO Bank  

VALUES (5, ‟Soumya‟, ‟Thiruvananthapuram‟,  „SB‟,5000);  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 36 of 42 

 

3. SQL Query for each question  

a. SELECT *  FROM Bank  

ORDER BY Branch_Name, Amount ASC;  

b. ALTER TABLE Bank   

ADD COLUMN Minimum_Amount DEC(10,2) DEFAULT 

1000;  

c. UPDATE Bank    

SET Minimum_Amount = 500  

 WHERE Branch_Name NOT IN („Alappuzha‟ , ‟Malappuram‟);   

d. SELECT  COUNT(*)  FROM Bank  

WHERE Minimum_Amount<1000;  

e. DELETE FROM Bank  

WHERE Acc_Type =‟SB‟ AND Branch_Name=‟Thiruvananthapuram‟ AND 

Amount<=0;  

 

Table with sample records 

 
 

Output of Queries 

a.5 rows in set   

b.Query OK, 0 rows affected.  

 
c.Query OK, 3 rows affected.  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 37 of 42 

d.1 row in set. 

 
e.Query OK, 1 row affected.  

 

 

*****  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 38 of 42 

Experiment No: 13 

  

Title:  Create a table Stock, which stores daily sales of items in a shop, with the following 

fields and insert at least 5 records into the table. 

 

Item_code Integer Primary key 

Item_name Varchar (20)   

Manufacturer_Code Varchar (5)   

Qty Integer   

Unit_Price Decimal (10,2)   

Exp_Date Date  

 

a. Display the details of items which expire after 31/3/2016 in the order of 

expiry date.   

b. Find the number of items manufactured by the company “SATA”.   

c. Remove the items which expire between 31/12/2015 and 01/06/2016.   

d. Add a new column named Reorder in the table to store the reorder level of 

items.   

e. Update the column Reorder with value obtained by deducting 10% of the 

current stock.   

 

SQL statements : 

 

1. SQL Query to create the  table .  

 

CREATE TABLE Stock   

(  

Item_code  INT PRIMARY KEY,  

Item_name VARCHAR (20),  

Manufacturer_Code VARCHAR(5),  

Qty INT,  

Unit_Price DEC(10,2),  

Exp_Date Date  

);  

 

2. SQL Query to insert 5 records into the table  

I. INSERT INTO Stock  

VALUES (1, ‟Fridge‟, ‟VOLTA‟, 30 , 9000, ‟2018-12-25‟);  

II. INSERT INTO Stock  

VALUES (2, ‟Washing Machine‟, ‟SATA‟,55,  8000, ‟2016-05-

01‟);  

III. INSERT INTO Stock  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 39 of 42 

VALUES (3, ‟Pressure Cooker‟, „PREST‟, 38, 4000, ‟2016-02-

04‟);  

IV. INSERT INTO Stock  

VALUES (4, ‟Grinder‟, ‟SATA‟,  17, 6000,  ‟2016-03-22‟);  

V. INSERT INTO Stock  

VALUES (5, ‟Mixie‟, ‟SATA‟, 60, 3000,  „2016-07-28‟);  

 

3. SQL Query for each question  

 

a. SELECT * FROM  Stock  

WHERE Exp_Date>‟2016-03-31‟  

ORDER BY Exp_Date ASC ;  

b. SELECT Manufacturer_Code , COUNT(*)   

FROM Stock  

WHERE Manufacturer_Code=‟SATA‟;  

c. DELETE   

FROM Stock  

 WHERE Exp_date BETWEEN '2015-12-31' and '2016-06-01';   

d. ALTER TABLE Stock   

ADD  COLUMN Reorder INT ;   

e. UPDATE Stock  

SET Reorder=Qty-(Qty*10/100);  

 

Table with sample records 

 
 

Output of Queries 

a. 3 rows in set   

 
 

b. 1 row in set.  

 
c. Query OK, 3 rows affected.  



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 40 of 42 

 

d. Query OK, 0 rows affected 

 

e. Query OK, 2 rows affected.  

 

 

 

*****  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 41 of 42 

Experiment No: 14 

  

Title: Implementation of PL/SQL commands  

  

Objective:   

 To understand the implementation of PL/SQL. 

 To write query for a database  

Theory:  

PL/SQL (Procedural Language/SQL) is a procedural extension of Oracle-SQL. 

PL/SQL allows users and designers to develop complex database applications that require the 

usage of control structures and procedural elements such as procedures, functions, and 

modules. The basic construct in PL/SQL is a block. In a block, constants and variables can be 

declared, and variables can be used to store query results. Statements in a PL/SQL block 

include SQL statements, control structures (loops), condition statements (if-then-else), 

exception handling, and calls of other PL/SQL blocks.  

 

Structure of PL/SQL-Blocks 

 

A PL/SQL block has an optional declare section, a part containing PL/SQL statements, and 

an optional exception-handling part. Thus the structure of a PL/SQL looks as follows 

(brackets [ ] enclose optional parts): 

 

[<Block header>] 

[declare 

<Constants> 

<Variables> 

<Cursors>  

<User defined exceptions>] 

begin 

<PL/SQL statements> 

[exception 

<Exception handling>] 

end; 

 

Declarations 
 

Constants, variables, cursors, and exceptions used in a PL/SQL block must be declared in the 

declare section of that block. Variables and constants can be declared as follows: 

 

<variable name> [constant] <data type> [not null] [:= <expression>]; 

 

 

 



  

 

 
Vij ith V. T,  Guest Faculty,  C -apt  

 

Page 42 of 42 

Exception Handling 
 

A PL/SQL block may contain statements that specify exception handling routines. Each error 

or warning during the execution of a PL/SQL block raises an exception.  

 

Write a PL/SQL program to add two numbers? 

SQL>   declare 

     a number(10):=&a; 

  b number(10):=&b; 

  c number(10); 

  begin 

  c:=a+b; 

  dbms_output.put_line('Sum is '||c); 

  end; 

  / 

 

 

 

 


